Тех мех опорные реакции балки
Содержание:
- 1 Порядок решения задач на определение реакций опор балок
- 2 Пример решения задачи на определение реакций опор балки
- 2.1 Решение задачи
- 2.1.1 Уравнения равновесия для сил
- 2.1.2 Уравнения равновесия для моментов
- 2.1.3 Решение уравнений равновесия
- 2.1.4 Проверка правильности решения
Порядок решения задач на определение реакций опор балок
- Выбираем систему координат. Можно ось x направить вдоль балки, ось y – вертикально вверх. Ось z будет направлена перпендикулярно плоскости рисунка, на нас. Центр системы координат можно выбрать в одной из точек опор балки.
- Отбрасываем опоры и заменяем их силами реакций.
- Если есть распределенная нагрузка, то заменяем ее равнодействующей силой. Величина этой силы равна площади эпюры. Точка приложения силы находится в центре тяжести эпюры. Так если нагрузка q равномерно распределена на отрезке AB , то ее равнодействующая имеет величину Q = q· | AB | и приложена посередине отрезка AB .
- Составляем уравнения равновесия для действующих сил. В общем случае они имеют вид:
.
Спроектируем это векторное уравнение на оси координат. Тогда сумма проекций сил на каждую из осей координат равна нулю:
(1) .
Находим проекции сил на оси координат и составляем уравнения (1). Для плоской системы сил, последнее уравнение, с проекциями на ось z , не используется. - Составляем уравнения равновесия для моментов сил. Сумма моментов сил относительно произвольной оси A′A′′ равна нулю:
(2) .
Чтобы составить это уравнение, мы должны выбрать ось, относительно которой вычисляются моменты. Ось лучше выбрать так, чтобы сделать вычисления более простыми. Чаще всего оси выбирают так, чтобы они проходили через точки опор балки, перпендикулярно плоскости рисунка. - Решаем уравнения и получаем значения реакций опор.
- Делаем проверку результата. В качестве проверки можно выбрать какую-нибудь ось, перпендикулярную плоскости рисунка, и относительно нее подсчитать сумму моментов сил, действующих на балку, включая найденные реакции опор. Сумма моментов должна равняться нулю.
Пример решения задачи на определение реакций опор балки
Жесткая балка, линейные размеры которой указаны на рисунке 1, закреплена в точках А и В. На балку действуют пара сил с моментом М, равномерно распределенная нагрузка интенсивностью q и две силы P и G, место приложения которых показано на рисунке.
Определить реакции опор балки в точках A и В, вызываемые указанными нагрузками.
Дано:
P = 20,2 Н ; G = 22,6 Н ; q = 2 Н/м ; M = 42,8 Н·м ; a = 1,3 м ; b = 3,9 м ; α = 45° ;
Решение задачи
Проводим оси x и y системы координат. Начало системы координат поместим в точку A . Ось x направим горизонтально, вдоль балки. Ось y – вертикально. Ось z перпендикулярна плоскости рисунка и направлена на нас. На рисунке она не указана.
Отбрасываем опоры и заменяем их силами реакций.
В шарнире A , разложим силу реакции на составляющие и вдоль осей координат.
Реакция , в подвижной опоре на катках, направлена вертикально. Предполагаемые направления реакций опор выбираем по своему усмотрению, наугад. Если ошибемся с направлением реакции, то получим отрицательное значение, что будет говорить о том, что соответствующая сила реакции направлена в противоположную сторону.
Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
Н .
Точка приложения равнодействующей находится в центре тяжести эпюры. Поскольку эпюра представляет собой прямоугольник, то ее центр тяжести находится в точке C – посередине отрезка AD :
AC = CD = b/2 = 1,95 м .
Уравнения равновесия для сил
Определяем проекции сил на оси координат.
Разложим силу на составляющие вдоль координатных осей:
.
Абсолютные значения составляющих:
.
Вектор параллелен оси x и направлен в противоположную от нее сторону. Вектор параллелен оси y и также направлен в противоположную сторону. Поэтому проекции силы на оси координат имеют следующие значения:
.
Остальные силы параллельны осям координат. Поэтому они имеют следующие проекции:
;
;
;
;
.
Составляем уравнения равновесия для сил.
Сумма проекций всех сил на ось x равна нулю:
;
;
;
(П1) .
Сумма проекций всех сил на ось y равна нулю:
;
;
;
(П2) .
Уравнения равновесия для моментов
Итак, мы уже составили два уравнения для сил: (П1) и (П2). Но в них есть три неизвестные величины: , и . Чтобы их определить, нам нужно составить еще одно уравнение.
Составим уравнение равновесия для моментов сил. Для этого нам нужно выбрать ось, относительно которой мы будем вычислять моменты. В качестве такой оси возьмем ось, проходящую через точку A , перпендикулярно плоскости рисунка. За положительное направление выберем то, которое направлено на нас. Тогда, по правилу правого винта, положительным направлением закручивания будет направление против часовой стрелки.
Находим моменты сил относительно выбранной оси.
Силы , и пересекают ось. Поэтому их моменты равны нулю:
; ; .
Сила перпендикулярна плечу AB . Ее момент:
.
Поскольку, относительно оси A , сила направлена против часовой стрелки, то ее момент положительный.
Сила перпендикулярна плечу AK . Поскольку, относительно оси A , эта сила направлена по часовой стрелки, то ее момент имеет отрицательное значение:
.
Аналогичным способом находим моменты остальных сил:
;
.
Момент от пары сил M не зависит от точек приложения сил, входящих в пару:
.
Составляем уравнение равновесия. Сумма моментов сил относительно оси A равна нулю:
;
;
;
(П3) .
Решение уравнений равновесия
Итак, для трех неизвестных величин, мы получили три уравнения:
(П1) .
(П2) .
(П3) .
Решаем эти уравнения. Вычисляем расстояния.
м;
м;
м;
м.
Из уравнения (П1) находим:
Н.
Из уравнения (П3) находим:
Н.
Из уравнения (П2) имеем:
Н.
Абсолютное значение реакции опоры в точке A :
Н.
Проверка правильности решения
Чтобы проверить, правильно ли мы определили реакции опор балки, найдем сумму моментов сил относительно другой оси. Если мы нашли реакции правильно, то она должна равняться нулю.
Возьмем ось, проходящую через точку E . Вычисляем сумму моментов сил относительно этой оси:
.
Найдем погрешность вычисления суммы моментов. Найденные силы мы округлили до двух знаков после запятой. То есть погрешность определения реакций опор составляет 0,01 Н . Расстояния, по порядку величины, примерно равны 10 м. Тогда погрешность вычисления суммы моментов составляет около 10·0,01 = 0,1 Нм . Мы получили значение -0,03 Нм . Эта величина отличается от нуля не более, чем на величину погрешности. То есть, с учетом погрешности вычислений, сумма моментов относительно другой оси равна нулю. Значит решение правильное, силы реакций найдены верно.
Второй способ решения
Первым способом мы составили два уравнения для сил и одно – для моментов. Задачу можно решить другим способом, составив два уравнения для моментов и одно для сил.
Воспользуемся тем, что сумма моментов сил равна нулю относительно любой оси. Возьмем вторую ось, которая проходит через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой равна нулю:
.
Вычисляем моменты сил относительно оси B .
; ; ;
;
;
;
;
.
Сумма моментов сил относительно оси B равна нулю:
;
;
;
(П4) ;
Итак, вторым способом, мы также имеем три уравнения:
(П1) .
(П3) ;
(П4) .
Здесь каждое уравнение содержит только одну неизвестную величину. Реакции и определяются из тех же уравнений, что и ранее. Находим силу из уравнения (П4):
Н.
Значение реакции совпало со значением, полученным первым способом из уравнения (П2).
Автор: Олег Одинцов . Опубликовано: 14-10-2017
Условие задачи
Для заданной двухопорной балки с консольной частью, нагруженной комплексом нагрузок: силой F, моментом m и распределенной нагрузкой q, определить величину и направление опорных реакций.
Расчетная схема балки показана на рис.1
Длина пролета балки 3м. Длина консольной части – 1,5м.
Пример решения
Рекомендуем посмотреть наш видеоурок. В нем мы постарались подробно показать порядок расчета реакций в опорах балки.
Для решения задачи, обозначим характерные точки (сечения) балки (точки A, B, C и D) и определим положение системы координат y-z, выбрав ее начало например в т. A (рис.2)
Обе опоры балки являются шарнирными, поэтому в каждой из них будет возникать только сила, обозначим их соответственно RA и RC
Так как все заданные нагрузки раположены исключительно в вертикальной плоскости (плоский поперечный изгиб) и не дают проекций на ось z, то опорные реакции будут тоже только вертикальными.
Вообще говоря, реакции в опорах являются такими силами, которые необходимы для удержания балки с приложенными к ней нагрузками, в статичном (неподвижном) состоянии. В данном случае эти силы не позволяют ей вращаться и перемещаться в вертикальной плоскости.
Данная балка является статически определимой, т.к. уравнений равновесия достаточно для определения неизвестных усилий в опорах балки.
Для составления уравнений статики, опорные реакции RA и RC предварительно направляются произвольно, например, вверх (рис.3).
Для определения двух неизвестных реакций потребуется два уравнения.
- Балка не перемещается по вертикали, т.е. сумма проекций всех сил на ось y равна нулю:
Здесь сумму моментов лучше записывать относительно точки расположенной на опоре (например, A), т.к. в этом случае соответствующая реакция RA в уравнении не участвует.
Из выражения (2) определяем RC:
и подставив его в выражение (1) находим RA:
Направление и величина реакций, как правило, необходимы для дальнейших расчетов балки на прочность и жесткость, поэтому во избежание возможных ошибок рекомендуется выполнять проверку найденных значений.
Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
ОПРЕДЕЛЕНИЕ ОПОРНЫХ РЕАКЦИЙ БАЛКИ
Последовательность решения задачи
1. Балку освободить от связей (связи) и их (его) действие заменить силами реакций.
2. Выбрать координатные оси.
3. Составить и решить уравнения равновесия.
Реакции опор можно определить, исходя из трех форм уравнений равновесия:
4. Проверить правильность решения задачи. Проверку необходимо производить по тому уравнению равновесия, которое не было использовано при решении данной задачи (задача решена правильно лишь в том случае, если после постановки значений активных и реактивных сил в уравнение равновесия выполняется условие равновесия).
5. Сделать анализ решенной задачи (если при решении задачи реакции опор или реактивный момент получается отрицательным, то их действительное направление противоположно принятому).
Пример 1. Определить реакции опор балки, если известно
Рис. 1 – Схема задачи
1. Изображаем балку вместе с нагрузками.
2. Выбираем расположение координатных осей, совместив ось Х с балкой, а ось У направив перпендикулярно оси Х.
3 . Производим необходимые преобразования заданных активных сил: силу, накопленную к оси балки под углом α , заменяем двумя взаимно перпендикулярными составляющими
F х = F с os 30 = 20 0,866 = 17, 32 кН
а равномерно распределенную нагрузку – её равнодействующей
Равнодействующая Q приложена в середине участка CD , в точке К (рис. 2).
Рис. 2 – Схема преобразования заданных активных сил
4.Освобождаем балку от опор, заменив их опорными реакциями, направленными вдоль выбранных осей координат (рис 3).
Рис. 3 – Схема реакций балки
5.Составляем уравнения равновесия статики для произвольной плоской системы сил таким образом и в такой последовательности, чтобы решением каждого из этих уравнений было определение одной из неизвестных реакций опор и определяем неизвестные реакции опор.
å М А = 0; F у АВ + M + Q AK – R Dy AD = 0 (1)
å М D = 0; R Ay AD – F у В D + M – Q KD = 0 (2)
Из уравнения ( 1 ) получаем
R Dy = F у АВ + M + Q AK / AD = 10 1 + 10 + 2 3 / 4 = 6,5 кН
Из уравнения ( 2 ) получаем
R Ay = F у В D – M + Q KD / AD =10 3 – 10 + 2 / 4 = 5,5 кН
Из уравнения ( 3 ) получаем
R A х = F х = F с os 30 = 20 0,866 = 17, 32 кН
7 . П роверяем правильность найденных результатов:
å F i y = 0; R Ay – F у – Q + R Dy = 5,5 – 10 – 2 + 6,5 = 0
Условие равновесия å F i y = 0 выполняется, следовательно, реакции опор найдены верно.
Пример 2. Определить реакции заделки, если известно
Рис. 4 – Схема задачи
1. Изображаем балку вместе с нагрузками.
2. Выбираем расположение координатных осей, совместив ось Х с балкой, а ось У направив перпендикулярно оси Х.
3 . Производим необходимые преобразования заданных активных сил: силу, накопленную к оси балки под углом α , заменяем двумя взаимно перпендикулярными составляющими
F х = F с os 30 = 20 0,866 = 17, 32 кН
а равномерно распределенную нагрузку – её равнодействующей
Равнодействующая Q приложена в середине участка CD , в точке К (рис. 5).
Рис. 5 – Схема преобразования заданных активных сил
4.Освобождаем балку от заделки, заменив её опорными реакциями, направленными вдоль выбранных осей координат и реактивным моментом (моментом заделки, М 3 )(рис 6).
Рис. 6 – Схема реакций балки
5.Составляем уравнения равновесия статики для произвольной плоской системы сил таким образом и в такой последовательности, чтобы решением каждого из этих уравнений было определение одной из неизвестных реакций опор и определяем неизвестные реакции опор.
å М В = 0; M 3 + R Ay A В + M + Q В K = 0 (2)
Из уравнения ( 1 ) получаем
M 3 = – F у АВ – M – Q AK = – 10 1 – 10 – 2 3 = – 26 кН м
Из уравнения ( 2 ) получаем
R Ay = – Q В K – M – M 3 / A В = – 2 2 – 10 -(-26) / 1 = 12 кН
Из уравнения ( 3 ) получаем
R A х = F х = F с os 30 = 20 0,866 = 17, 32 кН
7 . П роверяем правильность найденных результатов:
Условие равновесия å F i y = 0 выполняется, следовательно, реакции опоры найдены верно.
Задача 1. Определить реакции опор двухопорной балки (рисунок 7). Данные своего варианта взять из таблицы 1
Таблица 1 – Исходные данные
Номер схемы на рисунке 7
Рис. 7 – Схема задачи
Задача 2. Определить реакции заделки (рисунок 8). Данные своего варианта взять из таблицы 1
Таблица 1 – Исходные данные
Номер схемы на рисунке 8
Рис. 8 – Схема задачи
Задача 3. Определить реакции опор балки (рисунок 9).
Рис. 9 – Схема задачи
Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
- Ануфриева Екатерина ВладимировнаНаписать 64171 14.01.2016
Номер материала: ДВ-339695
Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .
-
14.01.2016 342
-
14.01.2016 12657
-
14.01.2016 1060
-
14.01.2016 13303
-
14.01.2016 1665
-
14.01.2016 738
-
14.01.2016 6568
Не нашли то что искали?
Вам будут интересны эти курсы:
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Взято с http://web.archive.org/web/20200806190045/https://segadreamcast.ru/teh-meh-opornye-reakcii-balki/